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Abstract. The dual solutions of two coupled third degree non-linear ordinary differential equations associated with 
the incompressible viscous laminar flow along a corner are considered. It is shown (through the numerical solution) 
that dual solutions occur in the interval /3 b ~</3 ~< 1.1211 for the Falkner-Skan parameter  /3 with the bifurcation 
taking place at the regular turning point/3 b. In the neighbourhood of the latter it is also shown that in such a case it 
is appropriate to expand the solution in powers of (/3 - /3b)  1/2 with the dual solutions branching out from the single 
solution at /3b. Then, on considering a simple transient problem (which provides an exact solution of the 
Navier-Stokes  equations when/3 = 1.0) it is found that the branch having the greatest value of the wall shear stress 
(for a given 13) is stable while the other  is unstable, the bifurcation point being the point of exchange of stability. 

1. Introduct ion  

The laminar viscous incompressible flow along a streamwise corner formed by the intersec- 
tion of two semi-infinite fiat plates with coplanar leading edges has attracted considerable 
attentions for many decades. The viscous flow in the vicinity of the intersection line is 
inherently three-dimensional and is often referred to as the corner boundary layer (CBL). 
Such a corner geometry (see Fig. la) has provided a simple corner model tenable to 
theoretical analysis. To the author's knowledge theoretical work on this problem was 
inaugurated in the mid-thirties by Loitsianskii et al. [1, 2] and followed ever since by many 
investigations some of which are found in [3]-[10]. 

For the purpose of the present article the flow may be envisaged divided into four regions 
as shown in Fig. lb (see also [4] and [8]). Region I is defined by x 1 > 0, x 2 = O(Re -1/2) and 

~c z r s, 

Fig. 1. Corner  flow configuration. 
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x 3 =  O(Re  -1/2) whereas in II (respectively III) X l > 0 ,  x2=  O(1) and x3=  O(Re) -~/2 

(respectively x 1 > 0 ,  x 3 = O(1) and x 2 = O(Re)- l /2) .  Here ,  Re = Ul/v (>1)  is the Reynolds 
number,  U and l designate reference velocity and length scales and v the kinematic viscosity. 
With regards to the inviscid flow it may, to first approximation, be represented by IV where 
x I > 0 ,  x 2 = O(1) and x 3 = O(1) which reflects that region I is to 'blend' with IV as 
(x 2, x3) ReI/e---> ~, x I > 0. This division, though may appear similar to that proposed in [4] 
or [8], is in fact different. In our analysis the two-dimensional streamwise component  is 
obtained at the outer  limit of II and III whereas it is obtained at the inner limit of these same 
regions in [4] and [8]. In the present problem the latter situation arises only for /3  = 0 and 
only for one of the dual solutions at this value. This difference arises from the fact that the 
matching requirements,  in our case, between I, II and III with IV amounts to satisfying the 
symmetry conditions only. Thus, to complete the boundary layer picture we need to add a 
further  inviscid region to effect the matching of the boundary layer in II and III with the 
strictly two-dimensional flow prevailing at the outer limits of these regions. In this context it 
is worth mentioning the work of Smith [9] on the three-dimensional stagnation point flow 
into a corner. Thereat ,  it was necessary to divide the corner layer into five regions (four 
regions in Smith's notation) which is in essence the same division used to analyse the present 
corner  problem. 

Most investigations (see for example [1]-[8]) were confined to zero streamwise pressure 
gradient situations where theoretical and experimental results obtained so far exhibit 
non-negligible quantitative differences depending on both the theoretical and experimental 
models used in each. Zamir [11] discussed this issue in some details. What is of direct 
interest to us here is the central conclusion which emerges from Zamir 's work. This may be 
stated as follows. For a rectangular corner configuration the viscous flow at Reynolds 
numbers  greater than 10 4 gives rise to CBL which is stable only with some favourable 
pressure gradient. Zamir notes also that the CBL becomes progressively unstable as the 
gradient is reduced to zero. 

These findings prompted the present author [10] to consider the problem with non-zero 
pressure gradient parallel to the corner line arising from a mainstream having a velocity 
component  (in the x 1 direction) proportional to x1~/(2-~+ O(Re  -1/2) where /3 is the 
Fa lkner -Skan  parameter .  The analysis of the boundary conditions (see §2, Eqs (1)) 
controlling the CBL (region I) prevailing in II and III revealed that the said conditions are 
non-unique;  i.e. dual solutions of the relevant equations are obtained for the range 
-0 .03678 ~</3 ~< 1.1211. (See Smith [20] for other examples of non-uniqueness in boundary 
layers.) This is a new result worthy of more examination in the light of the said differences 
between theory and experiments. The purpose of the present paper is, therefore,  to indulge 
into further  investigation of Eqs (1) and examine which of the two solutions is likely to be 
obtained in practice. 

2. Posing the problem 

The  (said) boundary conditions, prevailing in region II (or III) and governing the boundary- 
layer at I, are composed of sets of equations resulting from an asymptotic series expansion 
the leading order  of which gives the following system of equations 
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f ' " +  [(2 - / 3 ) h  + f l f "  + 13(1 __f,2) = O, ] 

h ' +  [(2 - / 3 ) h  + f ] h " +  [2(1 - / 3 ) f '  - (2 - / 3 ) h ' ] h '  - 13(4 - 3/3) } (la) 
4 ( 2 - / 3 )  J 

together with the boundary conditions 

f(O) = h(O) = f '(O) = h'(O) = O, ] 

rt-+oo; f ' - + l ,  h ' - +  ~__(i~/~).)  ( lb)  

Here,  the prime denotes differentiation with respect to the independent space variable ft. 
(For more details on the derivation of (1) see [10].) The Variables (f ,  h) are suitable 'stream 
functions' with ( f ' ,  h ' )  denoting respectively the main flow velocity parallel to the corner 
line and a convenient (but partial) representation of one of the secondary flow velocity 
components in the x 2 (or x3) direction which corresponds to region II (or III). Although 
system (1) was derived on consideration of a rectangular corner situation, it is in fact valid 
for a corner of an arbitrary angle with suitable modifications. Further, when the corner angle 
is close enough to rr it can be shown that Eqs (1) are valid at and near the symmetry plane 
and provide an exact solution of the Navier-Stokes equations for/3 = 1. The proof of this 
requires some space and has no immediate bearing on the purpose of the present paper; we 
shall report its details in a future publication. 

In [10] the dual solutions of (1) were obtained in the interval -0.03678 ~</3 ~< 0.285 but in 
fact with more severe and comprehensive numerical investigations we have found that the 
said interval extends to/3 ~< 1.1211. For convenience we shall refer to the solution with the 
higher value of the wall shear stress f"(0),  for a given value of /3, as the upper-branch 
solution (say, Uzu) and in consequence that with the smaller value the lower-branch solution 
(Dzt). Here,  U: denotes ~: = [f, hi r. 

Unlike the Falkner-Skan equation, system (1) admits no reverse flow in the streamwise 
direction (i.e., f " ( 0 ) > 0 )  while the secondary flow (which is related to h ' )  undergoes a 
reversal (h"(0) < 0) throughout the lower branch. In the special case of/3 = 0 the Blasius 
solution ( f )  is obtained on the lower-branch together with h = 0 at 0 ~< +7 < 2. The second 
solution is found to pertain to the upper-branch. 

In this paper, we shall, at first, present some numerical results of system (1) in the range 
-0.03678---</3 < 2 .  Thereafter we determine the bifurcation point /3b and examine the 
solution in its neighbourhood. Whence we find that the perturbation to the solution is 
0((/3 -/3b)1/2). Here,  the dual solutions branch out from the single solution at/3b with the 
upper-solution stemming out from the positive sign (arising from taking a square root) 
whereas the lower one from the negative sign. Our method in this regard is similar to that 
used by Merkin [12]. 

Having two solutions at hand makes it somewhat imperative to seek an answer as to which 
of the two may be obtained in practice. With the knowledge that both solutions display 
physically acceptable features, with the Blasius solution being a special case, it becomes 
rather intriguing to investigate this matter in some detail. As often with equations having 
more than one solution under given conditions [12, 19] the approach used here to tackle this 
question is to consider the transient problem 

02o~ 
- ~ o ~  + g ( 2 a )  

O~q Or 
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where 

~ =  

= 

M = 

/3 
[F(rt, r ) ]  ~ '= /3(4-3/3) , 
L H('q, ~ ) / '  -4-~ - ~ 

M 0 0 

0 M + ( 2 - / 3 ) ( F ' - H ' ) g  ' 

0 3 0 2 O 
+ ((2 - / 3 ) H  + F) - -  - / 3 F '  

0"1"13 0"17 2 

(2b) 

and (F, H)  standing for transient functions corresponding to (f ,  h). A prime in (2b) denotes 
partial differentiation with respect to +7. The boundary conditions for • > 0 are the same as in 
( lb)  and for ~- = 0 it is sufficient to use the steady state solution Yt to investigate the above 
evolution problem. It is noteworthy to underline at this point that Eqs (2) offer a new exact 
solution of the Navier-Stokes equations when/3 = 1. In this respect the investigation of (2) 
assumes considerable interest in this vicinity. Throughout the dual solution range of/3 we 
have found that the solution ~(rt,  ~-) approaches the upper solution UZu(rt) as 7---~.  The 
reason behind this behaviour becomes apparent when we subject the solution of (2) to small 
disturbances and examine the results for large z. The disturbance is (~01, ~') - ~(rt)) and is 
of O(e - ~ )  where A is governed by a linear eigenvalue problem involving fl:l or Y,. Solving for 
the smallest eigenvalue A t in the /3-)~ space we find that A~ is always negative for I: t and 
positive for 0z, which shows that for our problem Y, is the stable solution whereas U:z is the 
unstable one. The behaviour is, of course, in complete conformity with the numerical 
solution of the evolution problem (2). These results have there correspondence in situations 
where bifurcation of the kind occuring here takes place as, for example, in the case of 
reference [12]. 

3. Some numerical  results 

System (1) was solved numerically with double precision by using the shooting techniques 
proposed by Cebeci and Keller [15]. We have considered a solution as satisfactory once f ' (~ )  
and h'(~) attain their respective values to a precision of 10 -8. In Fig. 2 are shown the 
primary and secondary wall shear stresses f"(0) and h"(0) together with the wall shear stress 

Pt Fy+(0) corresponding to the Falkner-Skan equation added for reference. A point worth 
underlining in these results is that the Blasius solution lies on the lower-branch. It is also of 
interest to note here that in previous works [3-8] the solution obtained for f at zero pressure 
gradient pertained to the Blasius solution. We recall that in experimental works [16] 
'venturing' to obtain a stable laminar CBL zero streamwise pressure gradient, the wall shear 
stress in regions corresponding to II (or III) overshoots markedly the Blasius value (before 
tending asymptotically to it further away from the corner line). Such a behaviour lends 
support to our results in this region since on the upper-branch we find the solution with the 
higher value of the wall shear stress and therefore we may look upon the experimental 
results as a 'verification' of the existence of the present upper-branch solution. 

t! In conformity with the above and unlike FI+(0 ) which possesses negative values (reflecting 
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Fig. 2. Wall shear stress variation with ft. 

the existence of reverse flow) for - 0 . 1 9 8 8 4 ~  </3  < 0  on its lower-branch, f"(0)  is always 
positive. On the other  hand we remark that h"(O) becomes negative for all values of/3 on the 
lower-branch as well as for /3 ~> 1.0716 on the upper branch. This is rather a complicated 
behaviour  which prompts us to seek the solution of the full corner boundary layer equations 
derived in [10]. This solution is currently under investigation and will be reported in due 
time. 

Some results for f '  and h '  are depicted in Fig. 3 where profiles of these variables are 
shown for different values of/3.  We observe that the solution at /3b lies between the lower- 
and upper-branch solutions for/3 = 0. Further,  it is worth noting at this point that, for/3 = 1, 
we have, in essence, the same equations obtained in reference [ 9 ] - t h o u g h  differently 
formulated - on treating the problem of the three-dimensional stagnation point flow into a 
corner• In the absence of the parameter /3  there was no mechanism in [9] which could bring 
into light the dual solutions as in the present work; only one solution was obtained and was 
the upper-branch one. 

4. The solution near the bifurcation point fib 

From the numerical results it is evident that the bifurcation point in our problem is a regular 
turning point• The neighbourhood of such points may be approximated by a polynomial of 
the second degree• By this we mean that it is appropriate to expand the solution in powers of 
the square-root  of some suitable small parameter• Indeed,  such was the situation in the case 
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Fig. 3. (a) Profiles of the streamwise velocity f ' ;  (b) profiles of h'. 

of  the Fa lkner -Skan equation [17]. We shall therefore seek to find the bifurcation point fib of 
the dual solutions by setting e = f l -  fib and expanding f and h in powers of e a/2 (for 
0 < e ~ 1). In so doing our approach is analogous to that of Mahmood and Merkin [13]. Thus 
the required expansion is 

h = h o + ea/Zha + eh  z + . .  

(3) 

with (f0, h0) being the solution of system (1) a t  ~ b "  The system of equations corresponding 
to O(e ~/2) is expressed by the following homogeneous problem 

m . ..~ t! ¢ t __  
f l  + [ ( 2 -  f lb)ho +f0lYl  + [(2 -- f ib )h i  f l l f 0  - - 2 f l b f o f l  - - 0 ,  

h ; ' +  [(2 - ~b)ho + f0]h]' + [(2 - ~b)hl + fdho  + 

[2(1 - f lb)f 'o -- (2 -- f lb)ho)]h~ + [2(1 - f lb) f ' l  -- (2 -- f lb)h~)]ho = 0 

(4a) 

subject to the boundary conditions 

f~(0) = h , (0)  = f ' l (0)  = hi(0 ) = f ' l ( ~ )  = h~(~) = 0.  (4b) 

To solve system (4) we apply the extra boundary condition f'~(0) = 1 to force a non-trivial 
solution and consider the value of/3 b as an extra parameter  which must be determined. This 
is rather  like the inverse problem approach used in [13], [14] and [15]. In fact, it is the 
solution of this homogeneous problem which furnishes the value of fib" AS regards the 
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general solution of this problem we have f~ = r f, h 1 -- K/~ where jT,/~ denotes that solution for 
which f"(0) = 1. Now let us consider the equations at order O(e) which are 

f2' + [(2 - /3b)h  0 + L ] f 2  + [(2 -- /3b)h 2 + f2] f'(] -- 2 / 3 b f ' o f 2  = 

u ..1._ ¢ 2 2 - - 7 .  2 - r  2 
h o f  o - 1 f o  - g [ (2 - /3b)h  + f ] f  + /3b K f , 

"' + + " + " 
h 2 [ (2- /3b)ho folh2 [(2-/3b)h2 +f2lho + 

2 1  . . . . . .  [ ( - / 3b ) fO  -- (2 --/3b)ho)]h2 + [2(1 - /3b) f2  --  (2 --/3b)h2)]ho = 

ct t t ¢ 2 2 - - - .  

h o h  o + 2 f o h  o - h  o - K  [ ( 2 - f l b ) h + f l h  - 

2 -t - ,  - ,  3/3 2 --  12 f ib  + 8 
K [2(1 -- / 3 b ) f  --  (2 -- f l b ) h  ]h - - - 4 - - ~ 7 ~ b ) 2  

(Sa) 

with the boundary conditions 

f2(0) = h2(0 ) = f 2 ( 0 )  = h2(0 ) = f 2 ( ~ )  = 0 ,  h2(~ ) = - 1 / ( 2 - / 3 6 )  2 . (5b) 

We note that as 77--> 0% fo--T/+ 6 I + exponentially small terms (E.S.T) and h o ~ ( - - / 3 b / 2  × 

(2 -- /3b))'q + 6h + E.S.T. where 6 s and 6h are constants. If we set 

~: = r /+  (6 s + (2 - /3b)6h)/(1 - - / 3 b / 2 ) ,  

Eqs (5) would then, in general, have the solution 

, ( 4flb(5/3 b -- 2) ~:-2 + . . . )  ] 
f 2  ~ A~ 4/3b/(2-/30) 1 + (7--~3- 

(6) 
1 f i b ( 1 - - / 3 b )  , ( 6 _ 2 + . . . )  

h£ (2---/3b) 2 + (2T~bb)~-2__--)3b) f z + B ~  :-2 1+  ~---f lb)  

for ~: large where a prime denotes, here, differentiation with respect to ~:, A and B being 
integration constants. 

In order to solve Eqs (5) we proceed, similar to [13], to construct the following two 
integrals: 

(a) (f~, ha) with f " (0 )  = h"(0) = 0 which satisfies Eqs (5) with r = 1 and the remaining 
terms on the right-hand side being omitted; 

(b) (fb, h b )  with fb(0)  = hb(0 ) = 0 which satisfies Eqs (5) with K = 0. Further, we also 
construct two complementary functions as follows: 

(c) (fc, he) with f " (0)  = 1, h"(0) = 0; 
(d) (fd, h a )  with f ] ( 0 )  = 0, h](0) = 1. 

The full solution may therefore be written in the form 

[,il=r;+ ."b rK21 (7) 
h2J Lh~ hb] [ 1 J + Lh~ h , J L ,  
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for some constants ? and /z. Now, from considerations of Eqs (6) this solution behaves in 
general like 

VSl__r _A, _Ab 1 ' _A2c 
, - n a  [ 1 ] - I - [  ~:-Az~d] [ ~ ] -- [ 1/(2 0 /3b)2 ] (8) Lh:J" L ~- BbJ ~'- Bc 

as r/---> oo. Therefore,  in order to satisfy the boundary conditions we should have 

A d [A: AblF,, I+[A: (9a) 
ebJ[ 1 j 

for a suitable choice of 3' and/x.  Now recalling that to order O(s  ~,2) we have a non-trivial 
solution (which infers that K # 0) then we must have non-zero values for /z  and y such that 

ma Ab Ac Ad 
B~ Bb = 0 ,  Bc Bd = 0 .  (gb) 

It is evident then that Eqs (9) are compatible if and only if 

2 B a A c  - A b B c  
K = (10) 

B c A  ~ - A c B ~  " 

It goes without saying that Eq. (10) has two solutions which are -T-K b (say), and as a 
consequence we have near the bifurcation point/3 b the following expansion 

f"(0)  = f 0 ( 0 )  ~ Kb(/3 b -- /3)"2 + . . - ,  ] 
(11) 

h°(0) h;(0) - -" )1,2 = + ~ h  ( 0 ) ( &  - ~ + . . . ,  

where the " + "  sign pertains to the start of the upper-branch behaviour while the . . . . .  sign to 
the lower-branch. In the present case we have found that IKbl = 0.2269 and/~"(0) = 0.0282. 
Figure 4 depicts the wall shear stress behaviour given in (11) together with the corresponding 
numerical solution of system (1) near the bifurcation point K b. In this neighbourhood a good 
agreement is observed with the numerical solution. 

5. The transient problem 

Here  we shall consider the evolution with time of the solution of Eq. (1), as expressed in 
(2). We use finite-differences to approximate the time derivative and the Crank-Nicholson 
method to express the operator ~ as shown below 

( O ~ / O ' q )  n+' - -  ( O ~ / O r l )  n = 1 ( 9 . + ,  + ~n)o~en+ ' -I- ~ (12) 
a r  2 

where the superscript n refers to the time step n At. The boundary conditions are as follows 

r = 0 ; ~(rl, 0) = Ft,  ] 

t 
r > 0 ; F(0,, r) = H(0, r) = F',(0, r) = H'(0,Br) = 0 ,  

(13) 

17----> ~ ; F @ , r ) = l ,  H ( % r ) -  ~ ( ~  - ~  



Boundary-layer equations in a corner 533 

O 

0 

O • • 

-0.03? 

• . . ! . . . .  t . . . .  i . . . .  i . . . .  

-0.036 -0.035 -0.034 -0.033 -0.032 

0 

O . . . .  i . . . .  i . . . .  i . . . .  i . . . .  

-0.03? - 0 . 0 ~  - 0 . 0 ~  - 0 . 0~  -0.033 - 0 .0~  

Fig. 4. The wall shear stress evolution near the bifurcation point fib; the solid line pertains to the numerical solution 
of Eq. (1) and the solid circles to Eq. (11). 

where  here again a pr ime denotes differentiation with respect to 7. We note that  it is 
sufficient for our  purpose to use the lower-branch solution as our initial condition. The 
scheme of the solution, at each time step, is once again the shooting method of reference 
[14] applied with double precision and 10 -8 accuracy. Throughout  the dual solutions space of 
/3 and as ~----~ ~ the upper  branch solution is obtained. Recalling that for /3 = 1 Eqs (1) 
represent  an exact solution of the Navie r -S tokes  equations,  we give in Fig. 5 the transient 
behaviour  for this case as well as that for/3 = 0 as depicted in terms of F"(0, ~-) and H"(O, ~'). 
This behaviour  reflects that the lower-branch solution is unstable and the error  accumulation 
in the course of computat ion becomes sufficiently large enough, at some stage, to force the 
solution to leave the lower-branch basin onto the upper-branch.  It  is worth noting here that 
the same behaviour  was obtained when system (1), after some reformation,  we used in [18] 
as a test p rob lem to propose  a new numerical algorithm for non-linear boundary-value 
problems.  

Such a "sliding" behaviour  f rom one branch to the other is also observed in [12] where 
dual solutions were obtained for a mixed convection problem in a porous medium.  To 
investigate the reasons behind this tendency of the transient problem we impose a small 
disturbance (F,(~7, z), Hi(r/ ,  7")) on the solution by writing F(r~, ~') = F0(7/) + Fl('r/, q') and 
H(*I, ~')= Ho(71)+ H107, T) with F 0 and H 0 corresponding to the solution of system (1). 
Whence  we have the linearized problem 

02o~1 
on O-r = 9°°%' + ~, '~o (14) 
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where 90 and ~1 are equivalent to the operator @ with (F, H)  replaced by (F 0, H0) and 
(FI, Hi )  respectively. Also, we have ~-0 = [F0, H0] T and o% l = [F1, Hi] T 

In general, some of the solutions which bifurcate are stable and some are unstable [19]. 
The stability of such solutions may be examined by reverting to the linearized problem the 
solution of which is sought by setting (F~, H1) = e-*'(q~(rt), ~0(~7)) for some constant )t. Thus, 
we find that the disturbance (F~,//1) grows or decays according to whether A < 0 or A > 0 
respectively. Written in full, the linearized problem reads 

~ "  + ((2 - / 3 ) H  o + Fo)~O" + ((2 -/3)~o + q,)F o - 2/3Foq~,, + Aq~' = 0 ,  ] 

~0" + ((2 - /3)Ho. + Fo)q," + ((2 -/3)q~ + q,)H o + 

(2(1 - / 3 ) F  o - (2 - / 3 )Ho)4 , '  + (2(1 -/3)~o' - (2 - / 3 ) q , ' ) H  o + )tq,' = 0 

(15) 

subject to the boundary conditions 

~ ( o )  = q , ( o )  = ~ ' ( o )  = q , ' ( o )  = ~ ' ( ~ )  = 4 , ' ( ~ )  = o .  (16) 

The homogeneous Eqs (15) represent a linear eigenvalue problem in ,~. It remains now to 
determine the smallest eigenvalue A for each solution. To this end we proceed as in [12]. On 
considering Eqs (15) for large s ~ (~ having the same definition as in §4) we obtain the 
following asymptotic approximation 

1 
q~"' + ~ (2 -/3)~:q~" + ()t - 2/3)~o' = 0 ,  

1 ( ,  ) 4,"+~(2-/3)~:4,"+ ,l+~(4-3/3) 4,' /3(1-/3) 
( 2 - / 3 )  

q~ '=0 .  
(17) 

The solution of (17) is 

21--4/3 2~. - 3/3 - 2  - se2 1 
q~'--C~ 2-~ + D ~  2-~ e 2 ¢ , 

4 - 3 / 3  +2A 2 ( 1 - / 3 + 3 . )  _ 
2/3(1 - / 3 )  q~, + Gs ~ 2-/3 + j~? 2-~8 2/3 {:2 

(2 - 13 ) (4  + / 3 )  e 

(18) 

where C, D, G and J are integration constants. Further, to force non-trivial solutions for Eqs 
(15) (subject to (16)) we carry out their integration with non-zero boundary conditions either 
for q~"(0) or for ~0"(0). Thus we may integrate (15) twice with the following additional 
boundary conditions, 

1. q~"(0) = 1, ~0"(0) = 0, 
2. ~"(0) = 0, ~0"(0) = 1. 

Accordingly we have for the full solution 

[S:]=r,:', ..>, ._,,,,1 <19a, 

for some arbitrary constants y and /z. Return now to (18) from which we observe that for 
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large ¢ the general solution assumes the following form 

Gl(X)g(~:) G2(h)g(~:)/L ( 2 - ~ O  +/3)  

4-3fl +2A 

where g(s  c) = ¢ 2-8 . Since solutions (~1, @1) and (~P2, ~b2) are non-trivial then we must 
have non-zero values for 3, and/z .  This requires that 

CI(A) C2(A) 
G,(A) G2(A ) =0 (20) 

in order to satisfy the outer boundary conditions with exponential speed for any (/3, h). Then 
by carrying out the numerical integration of (15) subject to the conditions outlined above we 
can calculate the constants C 1, C 2, Gt and G 2 subject to (20) and so compute h. This was 
effected by using Newtons' method following the shooting schemes of [14]. We remark that, 
throughout the dual solutions domain of/3,  the smallest value A t is always negative on the 
lower-branch while it assumes positive values on the upper-branch. This behaviour confirms 
that the lower-branch solution is unstable while that of the upper-branch is stable as 
manifested by the numerical solutions of (12) subject to (13). Of these solutions, that 
corresponding to 13 = 1 represents a new exact solution of the Navier-Stokes equations. 

It is worth noting here that Eqs (4a) used to determine the bifurcation point /3b are the 
same as Eqs (15) with h = 0. In fact the bifurcation and the change in the temporal stability 
is the manifestation of one and the same phenomenon. According to the factorization 
theorem [19] h(/3) must change sign across the regular turning point/3b which means that the 
solution is stable on one side of the said point and is unstable on the other; i.e. the exchange 
of stability takes place at the said point. The present results (and those of [12] regarding a 
similar problem) confirm this behaviour. 

The author would like to thank the referees for their helpful comments and suggestions 
regarding this work. 
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